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Abstract
Stretched exponentials are often used to describe quasi-elastic neutron
scattering (QENS) and nuclear magnetic resonance (NMR) relaxation data from
polymer melts. In this paper, we attempt to derive a more physically meaningful
model of the local (∼0.1 nm), short-time (∼10 ps) dynamics of linear polymers
that takes into account (i) orientational diffusion along the polymer chain,
(ii) local conformational transitions, and (iii) long-time, large-scale motions.
The model takes into account the spatial component of the local dynamics,
described in terms of the scattering vector Q. The model is applied to QENS
results on highly entangled polyethylene oxide (PEO) melt at 373 K. We find
the Q dependences of the three correlation times of the model to be consistent
with Q0, Q−2 and Q−4 power laws, respectively. The high-Q limit of the
model closely resembles the NMR-based DLM model (Dejean de la Batie et al
1988 Macromolecules 21 2045) but the physical interpretation is different. At
373 K, the polymer dynamics is described in terms of transverse motions of the
chain segments over a distance of a few nm, with a local monomeric diffusion
coefficient of 1.78 × 10−9 m2 s−1. From this value, we derive a monomeric
friction coefficient ξ0 = 2.89 × 10−12 N s m−1 that, used as numerical input to
the Doi–Edwards theory, leads to a chain centre-of-mass diffusion coefficient
Dcm = 9.4 × 10−15 m2 s−1. This value is in good agreement with pulsed field
gradient NMR data (Appel and Fleischer 1993 Macromolecules 26 5520) and
validates the proposed model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Certain macroscopic properties of polymers, for example the molecular-weight dependence
of the viscosity, follow universal power laws [1]. Over the last 50 years, a large body of
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theoretical and experimental work has been devoted to the microscopic dynamical origins of
such behaviour.

The Rouse model [2] has been used successfully to describe the physics of short-chain
polymer melts. This model ignores the atomic structure and treats the coarse-grained structure
as a linear succession of beads that interact through a harmonic potential. The conformational
entropy is the restoring force that prevents large excursions from equilibrium. For long chains
(high molecular-weight polymers), the presence of entanglements leads to the well-known
reptation mechanism [3] in which, due to strong inter-chain interactions, the motion of a
particular chain is constrained within an imaginary tube formed by the surrounding matrix
and defined by the overall contour of the chain under consideration. At short times, the chain
experiences the classical Rouse dynamics until the root-mean-square displacements reach the
characteristic diameter of the tube, causing a crossover to the reptation regime at longer times.

Among several experimental approaches used to probe polymer dynamics, significant
progress has been achieved with nuclear magnetic resonance (NMR) [4] and quasi-elastic
neutron scattering (QENS) [5]. QENS measurements suggested that, even at short times and
distances, i.e. for values of the scattering vector Q above 0.2–0.3 Å

−1
, the Rouse model fails to

describe the local dynamics, due either to local polymer stiffness [6] or to intra-chain friction
related to local conformational changes [5]. At higher Q s, the intermediate scattering functions
I (Q, t) have been represented successfully by stretched exponentials [7, 8]. Despite significant
deviations from the ideal form of the Rouse model and a lack of clear physical significance,
this approach has provided a useful link between the short-time/high-Q and long-time/low-Q
regimes.

In this paper, we attempt to derive a more physically meaningful model of the local
(∼0.1 nm), short-time (∼10 ps) dynamics of linear polymers that takes into consideration
(i) orientational diffusion along the polymer chain, (ii) local conformational transitions, and
(iii) long-time, large-scale motions. The model takes into account the spatial component of the
local dynamics, described in terms of the scattering vector Q. The model is applied to QENS
results on highly entangled polyethylene oxide (PEO) melt at 373 K.

2. Dynamical model

This section provides a derivation of the incoherent dynamical structure factors measured in
QENS, arising from the various types of motion that come into play in a polymer chain.

2.1. General formalism

In the case of hydrogenous liquid samples that scatter mainly incoherently, QENS measures the
incoherent scattering function Sinc(Q, ω), the Fourier transform over space and time of the self-
correlation function Gs(r, t) of the nuclei in the system. If these particles do not experience
perfectly ergodic dynamics, Gs(r, t = ∞) is non-zero. In that case, Sinc(Q, ω) contains an
elastic component and takes the general form [9]

Sinc(Q, ω) = 1

π

∫ ∫
Gs(r, t)eiQr−ωt dr dt = A(Q)δ(ω) + (1 − A(Q)) D(Q, ω) (1)

where D(Q, ω) is related to the time dependence of the particle autocorrelation function. This
term is generally described by a sum of Lorentzian lines [9] and in practice is often well
represented by a single Lorentzian of half-width half-maximum (HWHM) τ (Q)−1:

D(Q, ω) ≈ L(Q, ω) = 1

π

τ(Q)−1

τ (Q)−2 + ω2
. (2)
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The elastic incoherent structure factor (EISF) A(Q) is the Fourier transform of the Gs(r, t =
∞) loci. In the case of a particle diffusing inside a confining volume, such as a sphere or
cylinder, A(Q) is the form factor of this volume. This formalism can also describe other
motions such as polymer conformational changes: for a particle experiencing reorientational
dynamics between two distinct sites separated by a distance d j , after orientational averaging
(since we are dealing with isotropic samples), the EISF is given by

Ajump2sites(Q) = 1 + j0(Qd j )

2
(3)

where j0 is the zeroth-order spherical Bessel function of the first kind.

2.2. Local conformational transitions

If the conformational motions experienced by a monomer are characterized by a single
correlation time τ0, the corresponding scattering function is

SConf
inc (Q, ω) = A0(Q)δ(ω) + 1 − A0(Q)

π
LConf(Q, ω) (4)

where LConf(Q, ω) is a Lorentzian function with HWHM τ0(Q)−1 and A0(Q) is the EISF
associated with the geometry of the motion.

2.3. Orientational diffusion along the polymer chain

In the case of crystalline PEO, two-dimensional (2D) 13C solid-state NMR experiments have
shown [4] that the conformational transitions can be described as helical jump (HJ) motions.
This process, which is very slow at 225 K, involves a rotation of a given monomer by 180◦
with a concomitant chain translation of one monomer unit. This translation can be described
as a random walk in continuous time (RWCT), a generalization of the discrete random walk
in which the waiting time probability density is no longer a Dirac function but has a time
dependence �(t). If �(t) is Poissonian, which is the case for conformational changes in PEO
melt [10], the autocorrelation function of the motion is given by

GHJ(t) = e−t/τ1 I0(t/τ1) (5)

where τ−1
1 is the rate of the conformational changes and I0 is the zeroth-order modified Bessel

function of the first kind.
The long time scales over which HJ motions takes place at 225 K are inaccessible with

QENS, but we can expect these motions to be still present above the melting point but several
orders of magnitudes faster and thus within the dynamical range of QENS. It should be noted
however that, due to the combined effect of damping originating from the averaged dynamics
of the neighbouring chains and of the presence of entanglements, the diffusion of the polymer
chains implied by the HJ motions should not extend beyond a few nm. These localized diffusive
motions give rise to a scattering function

SDiff
inc (Q, ω) = A1(Q)δ(ω) + 1 − A1(Q)

π
SHJ

inc(Q, ω) (6)

where A1(Q) is the form factor of the volume over which the diffusion takes place and
SHJ

inc(Q, ω) is the Fourier transform of equation (5) with τ1 now taken to be Q-dependent.

2.4. Long-time, large-scale motions

At times beyond those where this atomic description applies, larger-scale polymer viscoelastic
properties have to be taken into account. The present work focuses on high Q (>0.36 Å) data
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in which these larger-scale motions are not likely to be described accurately. For the present
purposes, they will be accounted for by a single relaxation time τ2(Q), leading to the scattering
function

SGlob
inc (Q, ω) = 1

π

∫
e−t/τ2 eiQr−ωt dt . (7)

2.5. Total incoherent dynamical structure factor

Assuming that the different dynamical mechanisms described in Sections 2.2 through 2.4
are uncorrelated, the final scattering function SPEO

inc (Q, ω) describing the PEO dynamics is
a convolution of equations (4), (6) and (7). The correlation time τ0 representing the local
reorientational dynamics is expected to be much shorter than τ1 and τ2 so that, to a good
approximation,

LConf(Q, ω) ⊗ SHJ
inc(Q, ω) ≈ LConf(Q, ω) (8)

LConf(Q, ω) ⊗ SGlob
inc (Q, ω) ≈ LConf(Q, ω) (9)

and SPEO
inc (Q, ω) becomes

SPEO
inc (Q, ω) = A0(Q)A1(Q)SGlob

inc (Q, ω) + A0(Q) (1 − A1(Q)) SGlob
inc (Q, ω) ⊗ SHJ

inc(Q, ω)

+ (1 − A0(Q)) LConf(Q, ω). (10)

Since τ2 is expected to be long compared to the energy resolution of the present
experiment, we can further simplify the expression above and write

A0(Q)A1(Q)SGlob
inc (Q, ω) ≈ A0(Q)A1(Q)δ(ω). (11)

The QENS cross section is then given by

∂2σ

∂
∂ω
= k

k0

σinc

4π
e−Q2〈u2〉/3

[
B0(Q)δ(ω) + B1(Q)SGlob

inc (Q, ω) ⊗ SHJ
inc(Q, ω)

+ B2(Q)LConf(Q, ω)
]

(12)

where σinc is the average incoherent cross section of the nuclei in the sample and the exponential
factor is the Debye–Waller factor accounting for the loss of QENS intensity to fast motions
described by a mean-square amplitude 〈u2〉. For the sake of clarity, the detailed balance factor
is not explicitly specified in equation (12) but was taken into account in the model fits. The
model scattering function was also convoluted with the resolution function of the spectrometer.

3. Experimental details

We have applied the model described in section 2.2 to a QENS measurement of the dynamics
of PEO melt on the QENS instrument [11] at the Intense Pulsed Neutron Source. The scattering
function S(Q, ω) was measured over a Q range of 0.3–2.6 Å

−1
, with an average energy

resolution of 80 μeV. Owing to the large incoherent neutron scattering cross section of the
1H nucleus and the abundance of this element in polymeric samples, QENS measurements give
a global view of the fast (ps–ns time scale), local (∼0.1 nm distance scale) dynamics of the
polymer in terms of the uncorrelated motions of its hydrogen atoms [9]. The sample consisted
of a film, 0.2 ± 0.05 mm thick, prepared by melting hydrogenous PEO (Aldrich, Tm ≈ 62 ◦C,
MW ≈ 100 000, i.e. well above the entanglement threshold of ∼3600) under dry air at 95 ◦C
onto a Teflon-coated plate. QENS spectra were recorded at a sample temperature of 100 ◦C.
The scattering from an empty cell was subtracted and the signal was normalized with respect
to a vanadium standard.
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Figure 1. Susceptibility function, χ ′′(Q, ω) versus ω, for PEO melt at 100 ◦C. The value of Q0,
the scattering vector corresponding to elastic scattering for a particular detector group, is indicated
at the left of each curve.

4. Results

4.1. Susceptibility spectra

To highlight the various dynamical processes involved, the results are presented in figure 1
for the 17 detector groups in terms of the susceptibility function χ ′′(Q, ω). A relaxation
mechanism with characteristic time τ will appear as a quasi-elastic peak of HWHM E ≈
h/2πτ in S(Q, ω) and as a band with a maximum at E ≈ h/2πτ in χ ′′(Q, ω). Two dynamical
regions can be identified. A low-energy dispersive band (E ≈ 0.4 meV at Q0 = 0.36 Å

−1
)

merges at higher Q with a non-dispersive band (E ≈ 5 meV), giving rise above 1.75 Å
−1

to a broad peak. Smith et al [12] have observed a similar broad excitation in QENS spectra
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Figure 2. Semi-logarithmic plot of the quasi-elastic signal of bulk PEO at 2.15 Å
−1

at T = 373 K
showing the fit of equation (12) (full red line) along with the three components: green dotted, narrow
(green) solid, and broad (purple) solid lines for the first, second, and third terms, respectively.

from a polyethylene melt. By means of a parallel molecular dynamics simulation, they were
able to show that this band can be decomposed into two contributions: at high Q (1.8 Å

−1
)

the excitation is due almost entirely to librational movements, while at small Q (0.8 Å
−1

)
an additional contribution comes from conformational transitions along the polymer backbone
from one rotational isomeric state to another.

4.2. Analysis of the QENS signal

The functional form given by equation (12) was fitted for each detector separately. It accounts
very well for the QENS spectra of bulk PEO at 373 K over the energy range from −2 meV
to +10 meV (neutron energy loss)—see figure 2. A key point of this study is that, in contrast
to NMR, neutron scattering experiments access the Q dependence of the correlation times and
hence provide spatial information. Over the Q range of this experiment, the three correlation
times deduced from the fit of equation (12) are separated by at least one order of magnitude
(figure 3(a)). This validates a posteriori the assumption made about the independence of the
three dynamical contributions to the model and also the approximations of equations (8) and
(9).

The relaxation time for the conformational motions, τ0, is found to be relatively short
and independent of Q, as expected for a reorientational and therefore non-dispersive motion.
It accounts for the rather broad Lorentzian line with HWHM around 5 meV in figure 1. A
similar short correlation time, corresponding to an energy HWHM of 5 meV, has been reported
previously in PEO melts [13]. A0(Q), easily extracted from B1, B2 and B3 (figure 3(b)),
provides geometrical information. As shown in figure 5(a), A0(Q) is almost constant above
2.0 Å

−1
at an unusually high value of 0.42. Such a large EISF value at high Q is consistent

only with a jump motion between two distinct sites, as in equation (3). The best agreement is
found for d j ∼ 2.1 Å.

The correlation time τ1 follows a Q−2 power dependence characteristic of a translational
diffusive motion. From a linear fit of the curve τ1 versus Q−2 we obtain a value for the
diffusion coefficient D = 1.78 × 10−9 m2 s−1. The present QENS measurements access
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Figure 3. (a) Correlation times derived from the fits of equation (5) to the QENS data; the straight
lines indicate the approximate power-law behaviours. (b) Intensities B0(Q), B1(Q) and B2(Q)

derived from the fits.

proton average dynamics on a length scale of the order of a covalent bond. The covalent
bonds are rigid on the meV energy scale, so any proton translational diffusion coefficient can
be associated directly with that of a single monomer considered as a rigid body. Defining a
monomeric friction coefficient ξ0 = kBT/D, where kB is the Boltzmann constant, we find
ξ0 = 2.89 × 10−12 N s m−1.

The monomeric friction coefficient plays a central role in polymer dynamics and is
present in all theoretical expressions describing polymer dynamics from the short-time semi-
local scale (Rouse dynamics) up to the long-time global scale (reptation). Using a segment
length σ = 4 Å, [1] the above value for ξ0 leads to the elementary Rouse relaxation rate
W = 3kBT/(ξ0 ∗ σ 2) = 1.11 × 1010 s−1 at 373 K, in agreement with recent PEO melt
data in the nanosecond time range [14]. The parameter ξ0 can be used to estimate at longer
times, even in the reptation situation, the single-chain centre-of-mass diffusion coefficient
Dcm = MmkBT Me/(3ξ0 M2) (for polymer molecular weight M > the entanglement mass Me,
as here), where Mm is the monomer molecular weight. We find Dcm = 9.4 × 10−15 m2 s−1,
in good agreement with pulsed field gradient NMR data on PEO melt at 373 K by Appel and
Fleischer [15] (see figure 4).

The Q dependence of τ2 is consistent with a Q−4 power law. Such behaviour is frequently
observed in polymer melt dynamics analyzed on the basis of stretched exponential functions,
where the stretching parameter β is found to be ∼0.5. In those cases, τβ goes as Q−2 and
thus satisfies the Gaussian approximation. As expected, the numerical values of τ2 extracted
from the fits are long compared to the resolution of the instrument used here, validating the
approximation of equation (11).

The values derived for A1(Q) are shown in figure 5(b). They are relatively low over most
of the Q range of the present measurements and can be better accessed with higher energy
resolution at low Q. We have re-analyzed high-resolution (15 μeV) data from hydrogenated
PEO (MW = 40, 000) measured at 75 ◦C on the IRIS instrument at ISIS [7], fitting them
with an expression similar to equation (12). Due to the higher resolution, limited Q range
(Qmax = 1.7 Å

−1
) and modest dynamical range (±100 μeV), the jump diffusion related

parameters were fixed at the values measured in the present work at IPNS, i.e., τ0 = 0.15 ps and
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monomeric friction coefficient ξ0 = 2.89 × 10−12 N s cm−1, derived from the Q2 dependence of
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Figure 5. (a) A0(Q), form factor (EISF) for conformational changes, extracted from equation (12)
and the measured intensities B1, B2 and B3 (see also figure 4). The full horizontal line indicates
the level (1 − a) of the weighting factor balancing short and long correlation time contributions to
13C spin–lattice relaxation NMR spectral density (see equation (13) and [18]). (b) Semi-log plot of
A1(Q) versus Q deduced from the fit of equation (12) to IRIS higher-resolution, low-Q data (open
circles) and QENS low-resolution, high-Q data (black squares). The full line represents the form
factor of a cylinder of 2.0 Å radius and 26 Å length.

d j ∼ 2.1 Å. The values of A1(Q) measured on the two instruments are in good agreement and
are well accounted for by the EISF of a cylinder of 2.0 Å radius and 26 Å length (figure 5(b)).

The present analysis of QENS data for PEO melt can be combined with the results of
a molecular dynamics simulation study of conformational changes in PEO [10] to obtain
a detailed insight of the melt dynamics. Due to fast g±t t ↔ t tg± and t t t ↔ g±tg±
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conformational rearrangements of the chain structure, a hydrogen atom experiences jump
diffusion between two sites separated by a distance of the order of 2 Å (from the form factor
A0(Q)). Our results show that the jump between adjacent sites (rotation of a chain segment) is
coupled to a translational motion (τ1 ∼ Q−2) giving rise to an overall helical jump movement.
Due to the damping effects of the neighbouring chains and/or topological constraints (e.g.,
entanglements), the translational movement of the whole chain is confined within a cylinder
that is a few nm long (form factor A1(Q)).

4.3. Comparison with NMR relaxation data

Detailed molecular dynamics can be also assessed by NMR. Hall and Helfand (HH) [16]
derived a bimodal autocorrelation function to describe damped conformational changes along
a polymer chain. Subsequently, Dejean de la Batie et al (DLM) [17] showed that this
autocorrelation function could not account for the high value of the spin–lattice relaxation time
T1 observed in 13C spin–lattice relaxation time experiments [18]. To explain their data, they
complemented the HH model with an additional fast, small-amplitude anisotropic motion that
they identified with librations of C–H vectors:

G(t) = (1 − a)e−t/τ1 e−t/τ2 I0(t/τ1) + ae−t/τ0 . (13)

In the first term, following [16], τ1 is the correlation time associated with the conformational
jumps responsible for orientational diffusion along the polymer chain, while τ2 represents a
damping mechanism consisting of either non-propagating isolated motions or distortions of
the chain with respect to its stable local conformation. The fast relaxation τ0 corresponds to
the correlation time of librations of C–H vectors inside a cone of half-angle θ , and a is a
geometrical factor depending on cos θ . In the case of PEO with M = 9200 g mol−1 at 373 K,
Dejean de la Batie et al [18] report τ1 ≈ 4 ps, τ1/τ0 = 200, τ1/τ2 = 200, and a = 0.56,
corresponding to the libration of a CH bond in a cone of half-angle θ = 40◦.

There is clearly a formal similarity between the DLM model and that proposed here. For
the sake of comparison, we express the latter in the variables Q and t :

I (Q, t) = A0(Q)A1(Q) + A0(Q)(1 − A1(Q))e−t/τ1 e−t/τ2 I0(t/τ1) + (1 − A0(Q))e−t/τ0 .

(14)

As is immediately apparent from a comparison of equations (13) and (14) and as stated
in the introduction, the presence of the variable Q makes it hard to compare directly models
derived for QENS and NMR data. Based on the simple qualitative argument that NMR accesses
local, atomic-scale dynamics, we can take the lower end of the equivalent Q range to be around
2 Å

−1
, so that 2π/Qmin ∼ 3 Å is on the order of two or three covalent bonds.

As shown in figure 5(a), the NMR value of a = 0.56 (equation (13)) agrees with the high-
Q limit of the QENS form factor, [1 − A0(Q)] = 0.56. Moreover, at high Q, A1(Q) ∼ 0 and
the elastic term disappears, so that equation (14) reduces exactly to equation (13).

Despite this formal similarity, our results lead to a different interpretation of the
PEO dynamics from that proposed by HH and DLM as an orientational propagation of
conformational changes along the polymer chain. Such a collective excitation would not induce
any translational diffusion of the protons and so could not account for the Q−2 dependence
of τ1 as measured on our hydrogenated sample. Moreover, our result show that the fast
relaxation time τ0 is mainly related to two-site jump conformational changes as opposed to
CH torsional librations within a cone. From the Q dependence of the total scattered intensity
loss (the Debye–Waller factor in equation (12)), we estimate the mean-square displacement due
to correlation times much shorter than τ0 to be 〈u2〉/3 = 0.13 Å

−2
. This value corresponds to
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Figure 6. Vibrational density of states g(ω) of PEO melt at 373 K.

a libration of a C–H bond in a cone of half-angle θ = 35◦, in relatively good agreement with
the value proposed by DLM. From an analysis of the vibrational density of states (figure 6), it
appears that C–H vectors are likely to experience a torsional mode with a libration energy of
∼18 meV.

Two-dimensional (2D) NMR exchange studies of the chain dynamics in polymer melts
(close to the glass transition) show that the geometry of the chain motion in melts is ill-defined
and involves a combination of rotational-diffusion-like motions through ‘small angles’ below
10◦ and large angle jumps through 10◦ or more [19]. As opposed to the present work (melt at
high temperature), no well-defined jump between two sites is observed by multi-dimensional
NMR in the melt at low temperature.

A fit of the experimental EISF, figure 5(a), with equation (3) is far from satisfactory so,
even as sensed by neutrons, the jump motion is actually not really a pure two-site jump motion.
But since, at the short time scale with which we are dealing, the high-Q limit of the EISF is well
defined (EISF ≈ 0.5), it seems that the disagreement is related to an ill-defined jump length
rather than an ill-defined number of sites.

The 0.5 limit of the EISF at high Q is significant, since it is almost exactly the weighting
factor that balances the two terms of equation (13) (DLM model) and equation (14) (model
proposed here). This agreement is interesting, because it refers to results obtained by two
independent techniques probing short-time dynamics (tens of ps in the neutron case and ns
in that of C13 spin lattice relaxation NMR) on the same system (PEO melt) at the same
relatively high temperature above Tg. The apparent discrepancy about the existence of two-
site jumps between the neutron and multi-dimensional NMR results could be due to (i) the
different temperatures that the system is probed at (far above Tg and around Tg, respectively)
or (ii) the fact that, in neutron scattering, dynamical modes with higher spatial extent make a
larger contribution to the signal.

As emphasized by Moe et al [20], the DLM model in the form given in equation (13) does
not appear to be a suitable model to fit NMR data from polymer melts. These authors find that
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the best description is obtained with a sum of a fast component and a stretched exponential
term. Such a model has in fact been shown by Triolo et al [13] to be useful in fitting QENS
data from a PEO melt. Nevertheless, in order to get a perfect fit to these data, Triolo et al had
to take into account a small elastic contribution. The model proposed here, equation (12), gives
a physical basis to all correlation times involved, together with an assignment of this elastic
contribution to localization of the polymer chain within a cylinder at short (ps) times. We note
that the chain is expected to leave this confinement volume at times longer than a few tens of ps,
so that the elastic contribution given in equations (11) and (12) is likely to appear broadened at
higher energy resolution.

5. Conclusions

The analysis of QENS data from a polymer melt proposed in this work leads to an appealing
physical interpretation of local polymer dynamics. We are able to determine a monomeric
friction coefficient that adequately describes, in the framework of the Doi–Edwards theory, the
long-time polymer behaviour in the Rouse (probed by neutron spin-echo measurements) and
reptation (probed by PFG NMR) regimes. This could be a route for estimating the monomeric
friction coefficient, and hence rheological properties, in physical environments such as nano-
confinement, where rheological measurements are impossible. We show for the first time that
high-Q (>0.2 Å

−1
) QENS data are consistent with theoretical (Rouse and reptation) concepts

usually expected to fail in this regime, and that the DLM model derived from NMR results is
a special case of the model proposed here, corresponding to a high-Q limit. However, the two
models have very different physical interpretations. It would be interesting to test the model
proposed here with T1 NMR data on PEO melt.
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